Nilai lim_(x→1)⁡ ((x-1)(√x+1))/(√x-1)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x-1)(\sqrt{x}+1)}{(\sqrt{x}-1)} = \cdots \)

  1. 0
  2. 1
  3. 2
  4. 4
  5. 8

(SPMB 2007)

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \frac{(x-1)(\sqrt{x}+1)}{\sqrt{x}-1} &= \lim_{x \to 1} \ \frac{(x-1)(\sqrt{x}+1)}{\sqrt{x}-1} \times \frac{\sqrt{x}+1}{\sqrt{x}+1} \\[8pt] &= \lim_{x \to 1} \ \frac{(x-1)(\sqrt{x}+1)^2}{x-1} \\[8pt] &= \lim_{x \to 1} \ (\sqrt{x}+1)^2 \\[8pt] &= (\sqrt{1}+1)^2 = 4 \end{aligned}

Jawaban D.